Adaptive finite element methods for elliptic equations with non-smooth coefficients
نویسندگان
چکیده
We consider a second-order elliptic equation with discontinuous or anisotropic coefficients in a bounded twoor three dimensional domain, and its finiteelement discretization. The aim of this paper is to prove some a priori and a posteriori error estimates in an appropriate norm, which are independent of the variation of the coefficients. Résumé: Nous considérons une équation elliptique du second ordre à coefficients discontinus ou anisotropes dans un domaine borné en dimension 2 ou 3, et sa discrétisation par éléments finis. Le but de cet article est de démontrer des estimations d’erreur a priori et a posteriori dans une norme appropriée qui soient indépendantes de la variation des coefficients.
منابع مشابه
Multiscale Numerical Methods for Singularly Perturbed Convection-diffusion Equations
We present an efficient and robust approach in the finite element framework for numerical solutions that exhibit multiscale behavior, with applications to singularly perturbed convection-diffusion problems. The first type of equation we study is the convectiondominated convection-diffusion equation, with periodic or random coefficients; the second type of equation is an elliptic equation with s...
متن کاملAdaptive Finite Element Methods for Elliptic Problems with Discontinuous Coefficients
Elliptic partial differential equations (PDEs) with discontinuous diffusion coefficients occur in application domains such as diffusions through porous media, electro-magnetic field propagation on heterogeneous media, and diffusion processes on rough surfaces. The standard approach to numerically treating such problems using finite element methods is to assume that the discontinuities lie on th...
متن کاملBuckling Analysis of Rectangular Functionally Graded Plates with an Elliptic Hole Under Thermal Loads
This paper presents thermal buckling analysis of rectangular functionally graded plates (FG plates) with an eccentrically located elliptic cutout. The plate governing equations derived by the first order shear deformation theory (FSDT) and finite element formulation is developed to analyze the plate behavior subjected to a uniform temperature rise across plate thickness. It is assumed that the ...
متن کاملOn the Efficiency of Adaptive Finite Element Methods for Elliptic Problems with Discontinuous Coefficients
The successful implementation of adaptive finite element methods based on a posteriori error estimates depends on several ingredients: an a posteriori error indicator, a refinement/coarsening strategy, and the choice of various parameters. The objective of the paper is to examine the influence of these factors on the performance of adaptive finite element methods for a model problem: the linear...
متن کاملEnhanced Cell-Centered Finite Differences for Elliptic Equations on General Geometry
We present an expanded mixed finite element method for solving second-order elliptic partial differential equations on geometrically general domains. For the lowest-order Raviart–Thomas approximating spaces, we use quadrature rules to reduce the method to cell-centered finite differences, possibly enhanced with some face-centered pressures. This substantially reduces the computational complexit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Numerische Mathematik
دوره 85 شماره
صفحات -
تاریخ انتشار 2000